SuatuPembangkit listrik dengan tegangan sebesar 440 Volt, Cos phi 0,80, dialirkan menggunakan Kabel tembaga dengan luas penampang 95mm² sepanjang 500 meter untuk menyuplai berbagai peralatan listrik dengan beban arus sebesar 200 Ampere. Berapa besar kerugian tegangan (Tegangan Drop) pada ujung kabel tersebut adalah : Vr = Drop Voltage Selanjutnyasaat diberi beban lampu 40 Watt, tegangan terminal yang terbaca pada alat ukur turun menjadi 210,6 Volt dan arus beban 0,163 Amper. Dari hasil perhitungan untuk beban terpasang sebesar 27,46 Watt. Terlihat dari gambar grafik, bahwa makin besar daya yang terpasang, arus beban dan daya aktif juga akan semakin besar. 2oQu. Generator sinkron adalah mesin sinkron pengubah energi mekanik menjadi energi listrik yang memiliki frekuensi putar rotor sama dengan frekuensi tegangan yang dibangkitkan. Hampir semua energi listrik di Indonesia dibangkitkan dengan menggunakan generator sinkron, sehingga keberadaannya sangat berpengaruh terhadap kontinuitas pelayanan. Salah satu faktor yang mempengaruhi karakteristiknya adalah perubahan beban generator. Pada penelitian ini dilakukan sebuah perhitungan dan analisis pengaruh perubahan beban terhadap karakteristik generator sinkron unit & 2 di PT Sumber Segara Primadaya. Berdasarkan hasil dari data di lapangan diperoleh efisiensi generator unit 1 & 2 berada pada rentang 97,12 % sampai dengan 98,73%, angka ini cukup baik mengingat rugi yang dihasilkan maksimal hanya sebesar 2,88 %. Discover the world's research25+ million members160+ million publication billion citationsJoin for free JURNAL RISET REKAYASAELEKTRO Juni 2019, Hal. 37~53 P-ISSN 2685 - 4341 E-ISSN 2685 - 5313  37 Halaman Web JRRE Analisis Pengaruh Perubahan Beban Terhadap Karakteristik Generator Sinkron Annisa1, Winarso2, Wakhyu Dwiono3 Program Studi S1 Teknik Elektro, Universitas Muhammadiyah Purwokerto Fakultas Teknik dan Sains, Universitas Muhammadiyah Purwokerto Dikirim, 3 Mei 2019 Direvisi, 1 Juli 2019 Diterima, Generator sinkron adalah mesin sinkron pengubah energi mekanik menjadi energi listrik yang memiliki frekuensi putar rotor sama dengan frekuensi tegangan yang dibangkitkan. Hampir semua energi listrik di Indonesia dibangkitkan dengan menggunakan generator sinkron, sehingga keberadaannya sangat berpengaruh terhadap kontinuitas pelayanan. Salah satu faktor yang mempengaruhi karakteristiknya adalah perubahan beban generator. Pada penelitian ini dilakukan sebuah perhitungan dan analisis pengaruh perubahan beban terhadap karakteristik generator sinkron unit & 2 di PT Sumber Segara Primadaya. Berdasarkan hasil dari data di lapangan diperoleh efisiensi generator unit 1 & 2 berada pada rentang 97,12 % sampai dengan 98,73%, angka ini cukup baik mengingat rugi yang dihasilkan maksimal hanya sebesar 2,88 %. Kata Kunci efisiensi generator generator sinkron perubahan beban Keyword generator eficiency load change synchronous generator. Synchronous generator is a synchronous machine which converting mechanical energy into electrical energy which has a turn of rotor frequency same with a raise voltage frequency. Almost all of the electrical power in Indonesia are raised up by synchronous generators, so its existence is very influential towards service continuity. One of the factors that effects its characteristics is generator load change. In this research, there were a calculation and an analysis of the load change effect towards synchronous generators unit 1 & 2 characteristics in PT Sumber Segara Primadaya. According to the field datasets, there was a generators unit 1 & 2 efficiency which on the range 97,12 % to 98,73 %, these numbers are good enough remembering the maximum losses is only 2,88 %. Korespondensi Penulis Annisa Program Studi S1 Teknik Elektro Universitas Muhammadiyah Purwokerto Jl. Raya Dukuh Waluh Purwokerto, 53182 Email 1. PENDAHULUAN Saat ini tidak bisa dipungkiri lagi bahwa hampir seluruh umat manusia di dunia memiliki ketergantungan terhadap energi listrik, sehingga bisa dibayangkan bila tiba-tiba seluruh catu daya listrik di bumi terhenti, maka akan banyak terjadi kekacauan dalam berbagai aspek. Dari sudut pandang politik, penggunaan energi tergantung pada kebijakan negara penyuplai, hal ini dapat mempengaruhi proses ekonomi dan politik di negara tersebut. Sistem otonomi penyediaan energi dapat membawa kontribusi signifikan untuk meningkatkan kekuatan negara Genadijs Zaleskis, 2013.  P-ISSN 2685 - 4341 Halaman Web JRRE Energi listrik adalah bentuk energi yang paling efektif, paling mudah dan paling efisien dalam cara penggunaannya. Energi listrik dapat diproduksi dengan berbagai cara dari sumber awal yang berbeda-beda, yaitu air, minyak, gas, batubara, angin, cahaya matahari, panas bumi, dan lain-lain Tumiran, 2002. Generator sinkron merupakan alat listrik yang berfungsi mengkonversikan energi mekanis berupa putaran menjadi energi listrik. Energi mekanis berupa putaran tersebut dihasilkan oleh penggerak mula prime mover yang dapat berupa turbin, mesin diesel, baling- baling dan lain-lain. Sedangkan energi listrik dikeluarkan oleh kumparan jangkar generator. Generator yang biasa digunakan dalam sistem pembangkitan adalah jenis generator sinkron atau serempak dimana tegangan dan frekuensi yang dihasilkan sesuai dengan kecepatan putarnya, sehingga diperlukan putaran yang konstan untuk menghasilkan tegangan dan frekuensi yang juga konstan. Untuk mendapatkan tegangan dan frekuensi yang konstan pada terminal generator maka arus jangkar dan sudut daya harus tetap pula. Besarnya perubahan beban generator perlu diketahui dan disesuaikan dengan kemampuan generator sehingga kestabilan kinerja generator dapat tercapai. Dalam pembangkitan GGL induksi pada generator sinkron dibutuhkan arus penguatan eksitasi untuk mengatur kuat medan magnet pada kutub-kutub generator yang terletak pada rotor. ā€œSistem penguatan medan magnet excitation berfungsi mengendalikan output berupa tegangan, arus dan daya reaktif dari generator agar tetap stabil pada beban sistem yang fluktuatif dengan cara mengatur besaran-besaran input untuk mencapai titik keseimbangan baruā€ Pandita M, 2015. Menurut definisi IEEE Stabilitas sistem tenaga adalah kemampuan sistem tenaga listrik untuk memberikan kondisi operasi mula, untuk kembali pada keadaan seimbang setelah mengalami gangguan fisik Fetissi Selwa, 2014. [4] Berdasarkan permasalahan diatas maka kinerja generator penting untuk dikaji, dengan menganalisis pengaruh perubahan beban pada generator sinkron 2. METODE PENELITIAN Mengumpulkan Data Data-data yang diperlukan berupa a. Data teknis generator sinkron 3 fasa. b. Data pengukuran daya aktif, daya reaktif, arus beban, tegangan output, dan arus eksitasi Mengolah Data Pengolahan data yang akan akan dilakukan meliputi a. Membuat simulasi generator sinkron 3 fasa dengan Simulink Matlab. b. Melakukan pengujian simulasi generator. c. Menghitung rugi total pada generator sinkron. d. Membuat kurva penaikan dan penurunan beban harian generator. e. Membuat kurva hubungan antara beban yang dilayani terhadap tegangan output Vout. f. Membuat kurva hubungan antara beban yang dilayani terhadap arus beban Ia. g. Membuat kurva hubungan antara beban yang dilayani terhadap arus medan If. h. Membuat kurva hubungan antara beban yang dilayani terhadap efisiensi generator. Analisis Hasil pengolahan data akan dianalisis seberapa besar pengaruh perubahan beban terhadap karakteristik generator sinkron 3 fasa terhadap tegangan output, arus beban, arus eksitasi, dan efisiensinya. Serta analisis pengujian simulasi generator denga Simulink Matlab. Rekomendasi Selanjutnya hasil analisis data yang sudah di lakukan akan menjadi dasar dalam penetuan rekomendasi untuk menjaga kestabilan kinerja generator. JRRE P-ISSN 2685 - 4341  Halaman Web JRRE 3. HASIL DAN PEMBAHASAN Technical Data Type QFSN-300-2-20B Rated Output 300 MW 353 MVA Maximum continues Output330 MW 388 MVA Rated voltage 20 kV Rated current 10,189 kA Rated power factor 0,85 Rated frequency 50 Hz Rated speed 3000 r/min Number of phases 3 Stator winding connecting Y Number of terminal 6 Insulation class F temp. limited in B class Cooling mode H2 DC resistance of stator winding per phase 0,001658 at 15o C Total loss 3370,5 KW Perhitungan Rugi Total dan Efisiensi Generator Untuk menghitung efisiensi generator dapat dihitung menggunakan persamaan  ļŒ ī“²ī˜ƒīµ‹īµ‘īµī“²ī˜ƒīµ‹īµ‘īµ ļ… ī“²ī˜ƒī“®īµ‹īµīµī˜ƒī“¶īµ‹īµī“½īµˆ ī˜ƒīµ”ī˜ƒī„³ī„²ī„²ī¦Ø Gambar Grafik Perubahan Beban terhadap Efisiensi Generator Unit 1 PT Sumber Segara Primadaya pada Tanggal 1 Februari 2018  P-ISSN 2685 - 4341 Halaman Web JRRE Gambar Grafik Perubahan Beban terhadap Efisiensi Generator Unit 2 PT Sumber Segara Primadaya padaTanggal 1 Februari 2018 Ketika beban naik maka arus eksitasi akan naik. Ketika arus eksitasi naik maka cos phi yang dihasilkan akan turun. Hal itu karena ketika beban naik dan arus eksitasi naik maka daya reaktif yang dihasilkan akan naik pula. Ketika daya reaktif meningkat, maka sudut daya yang dihasilkan semakin besar. Kenaikan perbedaan sudut daya akan menyebabkan cos phi yang dihasilkan lebih rendah Hal ini berkaitan langsung terhadap efisiensi generator. Cos phi yang rendah mempengaruhi rugi-rugi yang terdapat pada generator. Semakin rendah cos phi yang dihasilkan, maka semakin besar rugi-rugi yang ditimbulkan, dengan demikian efisiensi generator pun semakin rendah. Menurut data yang telah diperoleh, efisiensi generator unit 1 & 2 berada pada rentang 97,12 % sampai dengan 98,73%. Angka ini cukup baik mengingat rugi yang dihasilkan maksimal hanya sebesar 2,88 % Proses Penaikan dan Penurunan Beban Generator Gambar Grafik Perubahan Beban Generator PT Sumber Segara Primadaya pada Tanggal 1 Februari 2018 JRRE P-ISSN 2685 - 4341  Halaman Web JRRE Gambar Grafik Perubahan Beban Generator PT Sumber Segara Primadaya pada Tanggal 2 Februari 2018 Gambar Grafik Perubahan Beban Generator PT Sumber Segara Primadaya pada Tanggal 3 Februari 2018  P-ISSN 2685 - 4341 Halaman Web JRRE Gambar Grafik Perubahan Beban Generator PT Sumber Segara Primadaya pada Tanggal 4 Februari 2018 Gambar Grafik Perubahan Beban Generator PT Sumber Segara Primadaya pada Tanggal 5 Februari 2018 Beban generator unit 1 & unit 2 bersifat sangat fluktuatif. Proses penaikan dan penurunan beban pada generator ini disebabkan karena permintaan energi listrik yang diatur oleh PLN. Umumnya beban tinggi terjadi pada pukul – WIB dimana pada rentang waktu ini masyarakat secara bersamaan menghidupkan peralatan listrik. Di luar jam tersebut umumnya pembangkit tidak bekerja penuh dari kapasitas yang ada. Sistem kelistrikan PT Sumber Segara Primadaya terhubung dengan sistem interkoneksi Jawa bagian selatan sehingga listrik yang disalurkan terhubung ke beberapa daerah dan beberapa GI. Apabila suatu daerah kekurangan pasokan daya listrik maka pembangkit lain yang mempunyai kepasitas lebih akan menyalurkan ke daerah tersebut. Sistem interkoneksi diatur oleh PLN dengan melihat pemakaian beban fluktuatif masyarakat di setiap daerah JRRE P-ISSN 2685 - 4341  Halaman Web JRRE Pengaruh Perubahan Beban terhadap Tegangan Output Generator Gambar Grafik Perubahan Beban terhadap Tegangan Output Generator Unit 1 PT Sumber Segara Primadaya Stabilitas tegangan output generator baik. Sistem pengoperasian AVR Automatic Voltage Regulator berfungsi untuk menjaga agar tegangan generator tetap konstan, dengan kata lain generator akan tetap mengeluarkan tegangan yang selalu stabil tidak terpengaruh pada perubahan beban yang selalu berubah- ubah. Prinsip kerja AVR adalah mengatur arus penguatan pada exciter. Apabila tegangan output generator di bawah tegangan nominal teganga generator, maka AVR akan memperbesar arus eksitasi pada exciter. Dan juga sebaliknya apabila tegangan output generator melebihi tegangan nominal generator maka AVR akan mengurangi arus penguatan pada exciter. Dengan demikian apabila terjadi perubahan tegangan output generator akan dapat distabilkan oleh AVR secara otomatis Pengaruh Perubahan Beban teradap Arus Beban Gambar Grafik Perubahan Beban terhadap Arus Beban Generator Unit 1 PT Sumber Segara Primadaya  P-ISSN 2685 - 4341 Halaman Web JRRE Perubahan beban berbanding lurus mempengaruhi arus beban generator. Sejalan dengan Hukum Ohm, maka ketika terjadi perubahan beban, arus bebannya akan meningkat karena resistansi penghantar yang tidak berubah serta tegangannya tetap. Pengaruh Perubahan Beban terhadap Arus Eksitasi Gambar Grafik Perubahan Beban terhadap Arus Medan Generator Unit 1 PT Sumber Segara Primadaya Dari data yang diambil dari hasil report generator unit 1 & unit 2 pada tanggal 1 Februari 2018 menunjukan bahwa perubahan beban akan mempengaruhi arus eksitasi. Ketika beban meningkat, maka pengaturan uap masuk juga ditingkatkan dengan mengubah set point governor dimana putaran dan tegangan dibuat tetap. Tanpa perubahan peningkatan ini, maka frekuensi muatan generator akan naik, sedangkan frekuensi sistem tidak boleh berubah. Oleh karena itu ketika pengaturan uap masuk ditingkatkan maka secara otomatis arus eksitasi akan meningkat Simulasi Generator Simulasi Generator dengan Simulink Matlab Simulasi yang dilakukan pada generator menggunakan Matlab Simulink dimana generator yang dimodelkan adalah generator sinkron 3 fasa 3,125 generator pada simulasi berbeda dengan spesifikasi generator di PT Sumber Segara Primadaya, hal ini dikarenakan keterbatasan data parameter generator, hydraulic turbine governor dan sistem eksitasi di lapangan. Namun pada prinsipnya, cara kerja generator pada simulasi ini sama dengan generator di PT Sumber Segara Primadaya. JRRE P-ISSN 2685 - 4341  Halaman Web JRRE Gambar Pemodelan Generator Sinkron Gambar Model Operasi Hydraulic Turbine Governor  P-ISSN 2685 - 4341 Halaman Web JRRE Gambar Parameter Simulasi Generator Sinkron Pengujian Variasi Beban 3 Fasa Gambar Tegangan Output Generator Beban 1MW 1/2 Gambar Tegangan Output Generator pada Beban 1 MW 2/2 JRRE P-ISSN 2685 - 4341  Halaman Web JRRE Gambar Input Generator HTG & Eksitasi pada Beban 1 MW Dari pengujian tersebut, dapat diketahui bahwa besarnya tegangan Output generator stabil karena telah diatur oleh AVR. Sedangkan besarnya arus berbanding lurus dengan besarnya beban generator. Kemudian beban generator juga turut berpengaruh terhadap input generator. Semakin besar beban yang diterima generator, maka semakin panjang juga durasi yang diperlukan generator untuk mencapai kondisi stabil. Pegujian Beban 3 Fasa Daya Aktif & Reaktif Gambar Tegangan Output Generator pada Pegujian Beban 3 Fasa Daya Aktif & Reaktif ½ Gambar Tegangan Output Generator pada Pegujian Beban 3 Fasa Daya Aktif & Reaktif 2/2  P-ISSN 2685 - 4341 Halaman Web JRRE Gambar Input Generator HTG & Eksitasi pada Pengujian Beban 3 Fasa Daya Aktif & Reaktif Pengujian beban 3 fasa sebesar 2 MW dan 0,25 MVAR ini menunjukan bahwa adanya daya reaktif pada beban generator menyebabkan kualitas tegangan dan arus keluaran generator lebih baik dibandingkan dengan generator tanpa beban reaktif. Hal ini dapat terlihat dari lebih stabilnya frekuensi pada sinyal keluaran generator. Pengujian Beban Lebih Gambar Tegangan Output Generator pada Pegujian Beban Lebih Gambar Arus Beban pada Pegujian Beban Lebih JRRE P-ISSN 2685 - 4341  Halaman Web JRRE Gambar Input Generator HTG & Eksitasi pada Pegujian Beban Lebih Dari pengujian ini, dapat diketahui bahwa generator akan mengalami penurunan performa ketika diberi beban melebihi kapasitasnya. Kinerja generator yang awalnya berada pada kondisi normal akan mengalami penurunan seiring dengan bertambahnya waktu pembebanan. Pengujian Beban Tidak Seimbang Gambar Tegangan Output Generator pada Pengujian Beban Tidak Seimbang ½ Gambar Tegangan Output Generator pada Pegujian Beban Tidak Seimbang 2/2  P-ISSN 2685 - 4341 Halaman Web JRRE Gambar Arus Beban pada Pegujian Beban Tidak Seimbang 1/2 Gambar Arus Beban pada Pegujian Beban Tidak Seimbang 2/2 Gambar Input Generator HTG & Eksitasi pada Pegujian Beban Tidak Seimbang Pengujian beban tidak seimbang menunjukkan bahwa tegangan Output generator tidak bisa stabil mengikuti rated tegangannya. Semakin tinggi beban suatu fasa, maka semakin rendah tegangan keluarannya. Namun semakin tinggi beban suatu fasa, semakin tinggi pula arus bebannya. Beban tidak seimbang ini merupakan gangguan yang dapat memperpendek umur stator karena tidak terjaganya kestabilan arus pada stator, gangguan ini juga tidak baik untuk keamanan kumparan generator, maka dari itu beban setiap fasa suatu generator3 fasa haruslah seimbang. JRRE P-ISSN 2685 - 4341  Halaman Web JRRE Pengujian Gangguan pada Exciter Gambar Tegangan Output Generator pada Pengujian Gangguan pada Excitter Gambar Arus Beban pada Pegujian Gangguan pada Exciter Gambar Input Generator HTG & Eksitasi pada Pegujian Gangguan pada Exciter Gangguan yang terjadi pada exciter menyebabkan sistem eksitasi pada generator melemah menuju nilai 0, sehingga keluaran generator pun akan melemah. Generator tidak bisa bekerja dengan baik menghasilkan energi karena medan magnet yang dibuat oleh eksitasi tidak bekerja dengan baik walaupun prime movernya bekerja secara normal.  P-ISSN 2685 - 4341 Halaman Web JRRE Pengujian Persgeseran Sudut Fasa Tabel Ringkasan Sudut Fasa Sistem 3 fasa menyebabkan terjadinya pembagian sudut fasa menjadi 3 bagian. Sistem 3 fasa yang benar-benar seimbang akan memiliki besar sudut senilai 120o untuk setiap fasanya. Namun mengingat rugi-rugi yang tidak mungkin dihilangkan dari suatu sistem serta beban yang sangat fluktuatif, menjadi mustahil suatu sistem memiliki pembagian beban yang sangat seimbang. Namun dengan sistem manajemen yang baik dapat diperoleh pembagian beban setiap fasa yang mendekati seimbang. Dalam pengujian pergeseran sudut fasa ini, diketahui bahwa sudut fasa untuk setiap varian beban 3 fasa yang diuji memiliki nilai sekitar 120o pada setiap fasanya. Namun hal tersebut tidak nampak untuk 3 buah beban 1 fasa tidak seimbang di setiap fasa yang memiliki jumlah senilai 3 MW. Pada beban tidak seimbang ini, dapat diketahui bahwa sudut fasanya berada pada range nilai 130,036o sampai dengan 154,393o. Hal ini tentu tidak baik karena menyebabkan sistem menjadi tidak stabil sehingga dapat menurunkan kinerja generator. JRRE P-ISSN 2685 - 4341  Halaman Web JRRE 4. KESIMPULAN Setelah melakukan penelitian dan menganalisa data-data yang diperoleh selama melakukan penelitian di PT Sumber Segara Primadaya, maka penulis dapat menyimpulkan beberapa hal yaitu a. Beban harian generator unit 1 & 2 PT Sumber Segara Primadaya bersifat sangat fluktuatif. Umumnya beban tinggi terjadi pada pukul – WIB. b. Perubahan beban generator unit 1 & 2 PT Sumber Segara Primadaya yang terjadi tidak terlalu mempengaruhi tegangan outputnya. Hal ini dikarenakan peran AVR Automatic Voltage Regulator sebagai stabilitator tegangan output. c. Perubahan beban generator unit 1 & 2 PT Sumber Segara Primadaya berbanding lurus dengan perubahan arus beban yang terjadi. Hal ini disebabkan oleh besarnya resistansi dan tegangan yang tidak berubah saat terjadi perubahan beban. d. Perubahan beban generator unit 1 & 2 PT Sumber Segara Primadaya turut mempengaruhi perubahan arus medan/eksitasi pada exciter. Pada saat terjadi perubahan beban, set point governor juga mengalami perubahan, pengaturan uap masuk inilah yang membuat arus eksitasi otomatis berubah. e. Perubahan beban generator unit 1 & 2 PT Sumber Segara Primadaya mempengaruhi durasi yang dibutuhkan HTG Hydraulic Turbine Governor dan exciter untuk mencapai kondisi stabil. Semakin besar beban yang diterima generator, maka akan semakin panjang durasi yang dibutuhkan. f. Perubahan beban generator unit 1 & 2 PT Sumber Segara Primadaya juga mempengaruhi cos phi generator. Sedangkan cos phi generator berpengaruh langsung terhadap efisiensi generator. Efisiensi generator unit 1 & 2 berada pada rentang 97,12 % sampai dengan 98,73%. Angka ini cukup baik mengingat rugi yang dihasilkan maksimal hanya sebesar 2,88 %. g. Meninjau simulasi generator sinkron 3 fasa dengan Simulink Matlab, gangguan-gangguan yang terjadi pada input maupun output generator hendaknya jangan sampai terjadi, karena sangat mempengaruhi kestabilan kinerja generator bahkan dapat merusak generator. h. Untuk menjaga generator tetap dalam keadaan stabil, baiknya perubahan beban diatur supaya perubahannya tidak terlalu signifikan. Batas maksimum beban generator senantiasa juga perlu diperhatikan dalam rangka pemeliharaan generator. DAFTAR PUSTAKA [1] Bandri, Sepannur. 2013. Analisa Pengaruh Perubahan Beban terhadap Karakteristik Generator Sinkron Aplikasi PLTG Pauh Limo Padang. Padang Institut Teknologi Padang. [2] Higuchi, Tsuyoshi. 2014. Design Analysis of a Novel Synchronous Generator for Wind Power Generation. Nagasaki Nagasaki University. [3] Kristof, Vladimir. 2017. Loss of Excitation of Synchronous Generator. Kosice Slovenska Technicka Univerzita. [4] Selwa, Fetissi, Labed Djamel. 2014. Transient Stability Analysis of Synchronous Generator in Electrical Network. Constantine Mentouri University Route d’Ain El Bey. ... WHRPG Waste , Heat Recovery Power Generation menggunakan generator sinkron yang terhubung langsung dengan Gardu Induk di perusahaan tersebut. Dalam proses sinkronisasi memiliki syarat yang harus dipenuhi yaitu frekuensi yang sama, urutan fasa, sudut fasa, dan tegangan yang sama [3]. Generator merupakan salah satu aspek terpenting pada sistem pembangkit dan merupakan aspek yang paling rentan terhadapan gangguan dan kesalahan. ...... Generator sinkron /alternator adalah mesin listrik arus bolak balik yang menghasilkan arus bolak-balik. Generator sinkron bekerja dengan cara mengubah energi mekanik gerak menjadi energi listrik berdasarkan prinsip induksi elektromagnetik [3], [4], [8]. Generator yang digunakan pada WHRPG adalah generator sinkron 3 fasa. ... Liliana LilianaWaste Heat Recovery Power Generation WHRPG adalah sebuah sistem mengkonservasi energi dan menunjang pembangunan bersih atau Clean Development Mechanism CDM yang merupakan implementasi dari Kyoto Protocol. Sistem ini terbukti dapat menurunkan emisi CO2 sebesar ton per tahun. WHRPG menggunakan generator sinkron dengan kapasitas 8,5 MW dilengkapi dengan sistem eksitasi tanpa sikat. Pengoperasian WHRPG yang kontinyu harus didukung dengan pengoperasian generator dengan pengamanan yang optimal. Generator harus terus dilindungi dari gangguan-gangguan yang mungkin terjadi. Pengamanan Generator telah dilengkapi dengan Generator Protection Type M-3425 yang terdiri atas beberapa jenis pengamanan di dalamnya. Penelitian ini bertujuan untuk menganalisis kinerja proteksi pada generator khususnya terhadap gangguan tegangan lebih dan frekuensi rendah berupa kenaikan tegangan mencapai 45% dan gangguan penurunan frekuensi mencapai 6 % . Penelitian ini mengidentifikasi ketepatan kinerja relay Over Current Relay dan under frequency Relay dalam melaksanakan pengamanan gangguan tersebut. Hasil pemantauan dan analisis dinyatakan bahwa kedua relay dapat dengan cepat membaca gangguan yang terjadi, selanjutnya memberi isyarat untuk mengaktifkan lock out relay, alarm dan lampu indikator sehingga gangguanpun dengan segera dapat diatasi sehingga potensi kerusakan yang bisa terjadi pada generator bisa diminimalisir.... Sedangkan energi listrik di keluarkan oleh kumparan jangkar generator. Batas-batas penggunaan beban perlu di ketahui dan di sesuaikan dengan kemampuan generator sehingga kestabilan generator dapat tercapai [2]. ...Yulianto La EloWiko PrastoroFebry F. N. TallaPaper ini membahas tentang Studi Penggunaan Beban Pada Genset Komatsu Unit 01 di PLTD Kebun Kapas PT. PLN Persero ULP adalah salah satu jenis mesin listrik yang digunakan oleh PT. PLN Persero ULP Fakfak sebagai alat pembangkit energy satu generator yang digunakan oleh PT. PLN Persero ULP Fakfak yaitu Generator Komatsu dengan kemampuan daya 500 tersebut dapat melayani beberapa macam beban yang digunakan oleh generator, energi mekanik di dapat dari penggerak yang bisa berupa mesin disel, turbin, baling-baling, dan pembangkit dengan skala kecil dan jauh dari sumber energy terbarukan maka sering sekali di pakai pembangkit tenaga generator dituntut suatu kestabilan agar kinerja generator menjadi yang terlalu berlebih juga dapat membahayakan kinerja sebab itu kita perlu mengetahui batas-batas penggunaan beban pada ini dilakukan agar kontinuitas dan kehandalan listrik dapat studi akan dilakukan pengumpulan dan pengolahan data beban dan arus dari bentuk tabel dan akan di buat dalam bentuk grafik. Hal ini dilakukan agar kita dapat mengetahui batas-batas pembebanan pada Aria PutraDian Budhi SantosoGenerator sinkron membutuhkan suatu medan magnet sebagai penguat agar dapat menghasilkan tegangan listrik. Medan magnet tersebut dapat diperoleh dari arus eksitasi yang dibangkitkan oleh exciter. Arus eksitasi tersebut mengalir pada kumparan medan yang terdapat pada rotor, sehingga rotor itu dapat menghasilkan medan magnet. Kemudian, konduktor akan memotong garis-garis gaya magnet dan menghasilkan Gaya Gerak Listrik GGL sehingga menghasilkan tegangan [1]. Saat arus eksitasi diatur di bawah nilai nominal, maka fluks magnet yang terdapat pada stator akan menurun, sehingga tegangan yang dihasilkan oleh generator juga ikut turun. Perubahan pada eksitasi menjadi penyabab tegangan dan daya reaktif yang dihasilkan generator mempunyai nilai batas tertinggi dan batas terendah. Perubahan besarnya arus eksitasi juga mempengaruhi variasi nilai beban pada besarnya daya reaktif. Pengaturan input pada generator sinkron adalah pengaturan yang dilakukan input arus medan dan frekuensi, input arus medan digunakan untuk mengatur besarnya nilai keluaran daya reaktif dan tegangan yang dihasilkan oleh generator. Berdasarkan data akhir dari hasil perhitungan daya reaktif dapat dilihat bahwa nilai faktor daya yang diperoleh minimum sebesar 0,94 dengan arus eksitasi pada rotor sebesar 314 A dan daya reaktif sebesar 3,1 MVAR, sehingga dapat simpulkan bahwa besar nilai daya reaktif yang dihasilkan oleh generator berbanding lurus dengan arus eksitasi yang the generator there is a field reinforcement system excitation system which has a very important function for the generation excitation system can affect generator performance if the system is subjected to loads such as resistive, inductive and capacitive the generator must be able to generate electrical power in accordance with the amount of load this study, tests on the generator using inductive and resistive loads were carried test results obtained on the generator are that when the generator is given an inductive load, the generator experiences a voltage increase of so that it has a reactive power of VAR, and when testing with a resistive load it produces a reactive power of VAR and experiencesa voltage increase of Higuchi Yuichi YokoiTakashi AbeKazuki SakimuraA novel synchronous generator is proposed for wind power generation. The field flux is generated by the half-wave rectified excitation method. The generator does not require slip rings and brushes for field power supply, as well as permanent magnets. In this paper, the excitation method is explained, and then, the basic characteristics are calculated using the finite element method analysis. Furthermore, the generator is designed for increasing the output power and Pengaruh Perubahan Beban terhadap Karakteristik Generator Sinkron Aplikasi PLTG Pauh Limo PadangSepannur BandriBandri, Sepannur. 2013. Analisa Pengaruh Perubahan Beban terhadap Karakteristik Generator Sinkron Aplikasi PLTG Pauh Limo Padang. Padang Institut Teknologi of Excitation of Synchronous Generator. Kosice Slovenska Technicka UniverzitaVladimir KristofKristof, Vladimir. 2017. Loss of Excitation of Synchronous Generator. Kosice Slovenska Technicka Stability Analysis of Synchronous Generator in Electrical NetworkFetissi SelwaLabed DjamelSelwa, Fetissi, Labed Djamel. 2014. Transient Stability Analysis of Synchronous Generator in Electrical Network. Constantine Mentouri University Route d'Ain El Bey. ArticlePDF Available AbstractGenerator salah satu bagian dari sistem tenaga listrik yang digunakan untuk mengkon-versi energi mekanik yang berasal dari putaran turbin menjadi energi listrik dengan memanfaatkan gaya gerak listrik. Dalam proses pembangkitan gaya gerak listrik GGL di samping putaran dari turbin, diperlukan arus penguat eksitasi yang berfungsi untuk menghasilkan medan magnet pada kumparan medan di rotor generator. Arus digunakan untuk meningkatkan tegangan keluaran sesuai pembebanan yang diterapkan. Adapun alat yang digunakan untuk membina arus eksitasi adalah Automatic Voltage Regulator AVR. Pembebanan yang dibedakan pada pembangkit setiap waktunya berubah-ubah. Oleh pembangkit listrik tenaga listrik harus mampu membangkitkan daya listrik sesuai dengan besaran beban yang berubah-ubah tersebut. Pada pembangkitan tenaga listrik, fluktuasi pembebanan ini dapat mengatasi pembantuan katup udara dan arus eksitasi yang di-injeksikan pada generator rotor pada putaran rotor yang konstan oleh AVR sehingga dihasilkan daya listrik sesuai pembebanan yang diterapkan. Tujuan penelitian ini adalah untuk menganlisa pengaruh beban terhadap arus eksitasi yang ada. Hasil yang diperoleh adalah beban berpengaruh ter-hadap arus eksistasi, maka dibutuhkan injeksi agar menambah arus arus naik, agar adanya kes-esuaian arus Tujuan penelitian ini adalah untuk menganlisa pengaruh beban terhadap arus eksitasi yang ada. Hasil yang diperoleh adalah beban berpengaruh ter-hadap arus eksistasi, maka dibutuhkan injeksi agar menambah arus arus naik, agar adanya kes-esuaian arus Tujuan penelitian ini adalah untuk menganlisa pengaruh beban terhadap arus eksitasi yang ada. Hasil yang diperoleh adalah beban berpengaruh ter-hadap arus eksistasi, maka dibutuhkan injeksi agar menambah arus arus naik, agar adanya kes-esuaian arus Discover the world's research25+ million members160+ million publication billion citationsJoin for freeContent may be subject to copyright. JURNAL SIMETRIK VOL 11, NO. 1, JUNI 2021 p-ISSN 2302-9579/e-ISSN 2581-2866 398 1. PENDAHULUAN PLTA Mini Hydro Curug mempunyai 2 unit generator yang masing – masing mempunyai kapasi-tas 3400 kW. Generator merupakan salah satu bagian dari sistem tenaga listrik yang digunakan un-tuk mengkonversi energi mekanik yang berasal dari putaran turbin menjadi energi listrik dengan memanfaatkan gaya gerak listrik. Dalam proses pembangkitan gaya gerak listrik GGL selain pu-taran dari turbin, diperlukan arus penguat eksitasi yang berfungsi untuk menghasilkan medan magnet pada kumparan medan di rotor generator. Arus penguatan digunakan untuk mengatur besarnya tegangan keluaran sesuai pembebanan yang diterapkan. Adapun alat yang digunakan untuk mengatur arus eksitasi adalah Automatic Voltage Regulator AVR. Pembebanan yang dibedakan pada pembangkit setiap waktunya berubahubah. Oleh karenanya sua-tu pembangkit tenaga listrik harus mampu membangkitkan daya listrik sesuai dengan besarnya beban yang berubah-ubah tersebut. Pada pembangkitan tenaga listrik, fluktuasi pembebanan ini dapat diatasi dengan mengatur bukaan katup air dan arus eksitasi yang diinjeksikan pada rotor gen-erator pada putaran rotor yang konstan oleh AVR sehingga dihasilkan daya listrik sesuai pem-bebanan yang diterapkan. Dengan pentingnya fungsi sistem eksitasi pada suatu pembangkit tenaga listrik, maka dibuatlah penelitian ini, adapun tujuan penelitian kali ini adalah untuk menganalisa fungsi eksitasi pada pembangkit tenaga listrik, mengetahui rangkaian sistem penguat generator PLTA Mini Hydro Curug selain itu untuk mengetahui pengaruh pembebanan terhadap tegangan output pada generator di PLTA Mini Hydro Curug. PENGARUH PEMBEBANAN TERHADAP ARUS EKSITASI GENERATOR UNIT 2 PLTMH CURUG Miftah Farhan1, Rahmat Hidayat2, Yuliarman Saragih3 1,2,3Program Studi Teknik Elektro, Universitas Singaperbangsa Karawang 1miftahfarhan1006 2 3Yuliarman ABSTRACT The generator is one part of the electric power system that is used to convert mechanical energy from the turbine rotation into electrical energy by utilizing the force of electric motion. In the process of generating electromotive force apart from the rotation of the turbine, an amplifying current excitation is needed which functions to produce a magnetic field in the field coil in the generator rotor. The gain current is used to adjust the amount of output voltage according to the applied loading. The tool used to regulate the excitation current is the Automatic Voltage Regulator AVR. The loading that is differ-entiated at the generator varies from time to time. Therefore, a power plant must be able to generate electric power in accordance with the varying load size. In electric power generation, this loading fluc-tuation can be overcome by adjusting the water valve opening and the excitation current that is inject-ed into the generator rotor at a constant rotor rotation by the AVR so that electrical power is generat-ed according to the applied loading. The purpose of this study is to analyze the effect of load on the existing excitation current. The results obtained are that the load has an effect on the existential cur-rent, so injection is needed to increase the current when the current rises, so that there is a current compatibility. ABSTRAK Generator merupakan salah satu bagian dari sistem tenaga listrik yang digunakan untuk mengkon-versi energi mekanik yang berasal dari putaran turbin menjadi energi listrik dengan memanfaatkan gaya gerak listrik. Dalam proses pembangkitan gaya gerak listrik GGL selain putaran dari turbin, diperlukan arus penguat eksitasi yang berfungsi untuk menghasilkan medan magnet pada kumparan medan di rotor generator. Arus penguatan digunakan untuk mengatur besarnya tegangan keluaran sesuai pembebanan yang diterapkan. Adapun alat yang digunakan untuk mengatur arus eksitasi adalah Automatic Voltage Regulator AVR. Pembebanan yang dibedakan pada pembangkit setiap waktunya berubah-ubah. Oleh karenanya suatu pembangkit tenaga listrik harus mampu membangkitkan daya listrik sesuai dengan besarnya beban yang berubah-ubah tersebut. Pada pembangkitan tenaga listrik, fluktuasi pembebanan ini dapat diatasi dengan mengatur bukaan katup air dan arus eksitasi yang di-injeksikan pada rotor generator pada putaran rotor yang konstan oleh AVR sehingga dihasilkan daya listrik sesuai pembebanan yang diterapkan. Tujuan penelitian ini adalah untuk menganlisa pengaruh beban terhadap arus eksitasi yang ada. Adapun hasil yang didapatkan adalah beban berpengaruh ter-hadap arus eksistasi, maka dibutuhkan injeksi agar menambah arus saat arus naik, agar adanya kes-esuaian arus Kata Kunci beban listrik; eksitasi; generator; pembangkit listrik JURNAL SIMETRIK VOL 11, NO. 1, JUNI 2021 p-ISSN 2302-9579/e-ISSN 2581-2866 399 2. TINJAUAN PUSTAKA Prinsip Kerja PLTA Mini Hidro Pembangkit Listrik Tenaga Air PLTA merupakan pembangkit tenaga listrik yang mengu-bah energi potensial air menjadi energi listrik. Dengan memanfaatkan mesin penggerak turbin air yang terlebih dulu mengkonversi energi potensial air menjadi energi mekanik untuk kemudian dikonversikan lagi menjadi energi listrik dengan memutar rotor generator. Perbedaan PLTA untuk mini hidro daya keluarannya berkisar antara 100 sampai 10000 W, jadi Pembangkit listrik diatas W masuk kategori PLTA. Daya listrik yang dibangkitkan dapat dihitung menggunakan pendekatan rumus P = g . H . Q . Nt . Ng kW ……………………1 Dimana P = Daya yang dihasilkan turbin kW g = Percepatan gravitasi bumi kg m/s2 H = Tinggi jatuh air m Q = Debit air m3/s Nt = Efesiensi turbin % Ng = Efesiensi generator % Proses pembangkitan energi listrik pada PLTA Mini Hydro Curug terdiri dari beberapa tahapan yaitu 1 Aliran sungai dengan jumlah debit air sedimikian besar ditampung dalam betuk bangunan ben-dungan 2 Air tersebut dialirkan melalui saringan power intake 3 Kemudian masuk ke dalam pipa pesat penstock 4 Untuk mengubah energi potensial menjadi energi kinetik. Pada ujung pipa dipasang katup uta-ma Main Inlet Valve 5 Air disalurkan ke rumah siput spiral case. Air yang telah mempunyai tekanan dan kecepatan tinggi energi kinetik dirubah menjadi energi mekanik dengan dialirkan melalui sirip–sirip pengarah sudu tetap akan mendorong sudu jalan/runner yang terpasang pada turbin 6 Pada turbin , gaya jatuh air yang mendorong baling–baling menyebabkan turbin berputar . Tur-bin air kebanyakan seperti kincir angin, dengan menggantikan fungsi dorong angin untuk memutar baling–baling digantikan air untuk memutar turbin. Selanjutnya turbin merubah en-ergi kinetik yang disebabkan gaya jatuh air menjadi energi mekanik 7 Generator dihubungkan dengan turbin melalui gigi–gigi putar sehingga ketika baling–baling turbin berputar maka generator ikut berputar. Generator selanjutnya merubah energi mekanik dari turbin menjadi energi listrik 8 Air keluar melalui tail race. 9 Tenaga listrik yang dihasilkan oleh generator masih rendah, maka dari itu tegangan tersebut terlebih dahulu dinaikan dengan trafo utama 10 Untuk efisiensi penyaluran energi dari pembangkit ke pusat beban , tegangan tinggi tersebut kemudian diatur dan dibagi di switch yard. selanjutnya disalurkan /interkoneksi ke sistem tena-ga listrik melalui kawat saluran tegangan tinggi. Generator Sinkron Definisi Generator Sinkron Generator sinkron merupakan salah satu jenis generator listrik dimana terjadi proses pengkonversian energi dari energi mekanik ke energi listrik yang dihasilkan oleh putaran kumparan rotor yang memotong suatu medan elektromagnetik yang dihasilkan di stator sehingga kemudian menyebabkan timbulnya energi listrik. Dikatakan generator sinkron karena jumlah putaran rotornya sama dengan jumlah putaran medan magnet pada stator. Kecepatan sinkron ini dihasilkan dari kecepatan putar rotor dengan ku-tub-kutub magnet yang berputar dengan kecepatan yang sama dengan medan putar pada stator. Kumparan medan pada generator sinkron terletak pada rotornya sedangkan kumparan jangkarnya terletak pada stator. Induksi elektromagnetik yang terjadi dalam generator merupakan bentuk aplikasi nyata dari Hukum Faraday yang menyatakan ā€œJika sebuah penghantar memotong garis-garis gaya dari sebuah medan magnetik flux yang konstan, maka pada penghantar tersebut akan timbul tegangan induksiā€. Kontruksi Generator Sinkron Secara umum generator sinkron terdiri atas stator, rotor, dan celah udara. Stator merupakan bagian dari generator sinkron yang diam sedangkan rotor adalah bagian yang berputar dimana diletakkan kumparan medan yang disuplai oleh arus searah dari Eksiter. Celah udara adalah ruang antara stator dan rotor. Celah udara adalah ruang antara stator dan rotor. 1 Rotor Rotor merupakan bagian berputar yang berfungsi untuk membangkitkan medan magnet yang menghasilkan tegangan dan akan di induksikan ke stator. Pada rotor terdapat kutub-kutub magnet dengan lilitannya yang dialiri arus searah, melewati cincin geser dan si-kat. Generator sinkron memiliki dua tipe rotor, yaitu a Rotor yang berbentuk kutub sepatu salient pole b Rotor yang berbentuk kutub dengan celah udara sama rata cylindrical 2 Stator Stator adalah bagian generator yang diam dan berfungsi sebagai tempat untuk menerima induksi magnet dari rotor. Arus bolak-balik AC yang menuju ke beban disalurkan melalui armatur, komponen ini berbentuk sebuah rangka silinder dengan lilitan kawat konduktor yang sangat banyak. Armatur selalu diam tidak bergerak. Oleh karena itu, komponen ini juga disebut dengan stator. Lilitan armatur generator dalam wye dan titik netral dihub-ungkan ke tanah. JURNAL SIMETRIK VOL 11, NO. 1, JUNI 2021 p-ISSN 2302-9579/e-ISSN 2581-2866 400 Prinsip Kerja Generator Sinkron Ketika kumparan medan yang terdapat pada rotor dihubungkan dengan sumber eksitasi tertentu yang akan mensuplai arus searah terhadap kumparan medan. Dengan adan-ya arus searah yang mengalir melalui kumparan medan maka akan menimbulkan fluksi yang besarnya terhadap waktu adalah tetap. Penggerak awal Prime Mover yang sudah terkopel dengan rotor segera dioperasikan sehingga memutar rotor pada kecepatan nominalnya. Perputaran rotor tersebut sekaligus akan memutar medan magnet yang dihasilkan oleh kumparan medan. Medan putar yang dihasilkan pada rotor, akan diinduksikan pada kumparan jangkar sehingga pada kumparan jangkar yang terletak di stator akan dihasilkan fluks magnetik yang berubah-ubah besarnya terhadap waktu. Untuk generator sinkron tiga phasa, digunakan tiga kumparan jangkar yang ditem-patkan di stator yang disusun dalam bentuk tertentu, sehingga susunan kumparan jangkar yang sedemikian akan membangkitkan tegangan induksi pada ketiga kumparan jangkar yang besarnya sama tapi berbeda fasa 1200 satu sama lain. Setelah itu ketiga terminal kumparan jangkar siap dioperasikan untuk menghasilkan energi listrik. Sistem Eksitasi Eksitasi pada generator sinkron adalah proses penguatan medan magnet dangan cara memberikan arus searah pada belitan medan yang terdapat pada rotor. Sesuai dengan prinsip el-ektromagnet yaitu apabila suatu konduktor berupa kumparan dialiri listrik arus searah maka kumparan tersebut akan menjadi magnet shingga akan menghasilkan fluks-fluks magnet. Apabi-la kumparan medan yang telah diberi arus eksitasi diputar dengan kecepatan tertentu, maka kumparan medan yang telah diberi arus eksitasi diputar dengan kecepatan tertentu, maka kumparan jangkar yang terdapat pada stator akan terinduksi oleh fluks-fluks magnet yang dihasilkan oleh kumparan medan sehingga dihasilkan tegangan listrik bolak-balik. Besarnya te-gangan yang dihasilkan tergantung kepada besarnya arus eksitasi dan putaran yang diberikan pa-da rotor, semakin besar arus eksitasi dan putaran, maka akan semakin besar tegangan yang akan dihasilkan oleh sebuah generator. Berdasarkan cara penyaluran arus searah pada rotor generator sinkron, sistem eksitasi terdiri dari dua jenis yaitu sistem eksitasi dengan menggunakan sikat brush excitation yang terdiri dari sistem eksitasi konvensional dan eksitasi statis dan sistem eksitasi tanpa menggunakan sikat brushless ecxitation yaitu menggunakan sistem permanen magnet generator. 3. METODOLOGI Penelitian ini diperlukan metode yang dipergunakan untuk melakukan penelitian agar mampu menjawab masalah yang sedang diteliti. Suatu penelitian biasanya dimulai dengan suatu perencanaan yang seksama dengan mengikuti rangkaian deretan petunjuk yang disusun secara logis dan sistematis, sehingga hasilnya dapat mewakili kondisi sebenarnya dan dapat dipertanggung jawabkan . Agar menghasilkan hasil penelitian yang baik dan memenuhi tujuan penelitian, maka proses penelitian akan dirumuskan sesuai dengan judul penelitian dan mencakup langkah-langkah yang dilakukan dalam penelitian tersebut. Berikut langkah-langkah penelitian yang dijelaskan penulis melalui proses penelitian yaitu Sumber Miftah Farhan, 2020 Gambar 1. Alur Penelitian 1 Identifikasi Masalah Identifikasi Masalah merupakan langkah awal yang dilakukan dalam penelitian ini. Pada tahap mengidentifikasi masalah dimaksudkan agar dapat memahami masalah yang akan diteliti, sehingga dalam tahap analisis dan perancangan tidak keluar dari permasalahan yang diteliti. 2 Studi Literatur Pada tahap penelitian sastra, penulis mempelajari dan memahami teori-teori yang diperoleh dari berbagai buku, jurnal dan internet sebagai pedoman dan referensi untuk melengkapi kosakata konsep dan teori, sehingga memberikan landasan yang baik dan dasar ilmiah untuk pemecahan masalah. Artikel ini Mendiskusikan dan mempelajari penelitian yang berhubungan dengan pertanyaan penelitian. 3 Pengumpulan Data Sebagai bahan pendukung yang sangat berguna bagi penulis untuk mencari atau mengumpulkan data yang diperlukan dalam penelitian ini, penulis menggunakan beberapa cara, yaitu a. Dokumen Kerja hard document b. Pengamatan observation c. Wawancara Interview Untuk menyelesaikan masalah pengaruh pembebanan terhadap arus eksitasi generator unit 2 PLTMH curug maka dilakukan langkah-langkah sebagai berikut a. Mengumpulkan data teknis dilapangan yaitu data beban dan data suplai daya. b. Menganalisa kapasitas suplai daya. c. Mengelompokkan jenis pembebanan JURNAL SIMETRIK VOL 11, NO. 1, JUNI 2021 p-ISSN 2302-9579/e-ISSN 2581-2866 401 d. Melakukan perencanaan analisa pada eksitasi daya dengan pengaturan injeksi pada beban Penelitian ini dilaksanakan di PLTA Mini Hydro Curug unit 2. Dengan jenis penelitian Survey Research penelitian survei, dimana tidak dilakukan perubahan atau tidak ada perlakuan khusus terhadap variabel yang diteliti. Pengambilan data dilakukan selama 03 Februari 2020 4. HASIL DAN PEMBAHASAN Sistem Eksitasi PLTMH Curug Sistem eksitasi merupakan sistem penguatan generator yang menginjeksikan arus searah pa-da generator. Sistem eksitasi di PLTMH Curug menggunakasn sitem eksitasi tanpa sikat brash-less. Sistem pengoperasian Unit PLTMH Curug dapat dilakukan dengan cara manual, program, dan remote. Adapun pengoperasian secara manual ialah proses pelaksanaannya dilakukan di pow-er house dengan sistem step by step dari panel komando. Lalu ada pengoperasian dengan program yaitu proses pelaksanaannya di power house dengan sistem otomatis dari panel komando. Se-dangkan pengoperasian dengan remote ialah proses pelaksanaannya dengan cara otomatis yang dikendalikan di ruang kontrol building. Adapun Sistem eksitasi memiliki fungsi – fungsi antara lain 1 Mempertahankan tegangan ouput generator 2 Menjaga kesetabilan aliran daya reaktif 3 Menjaga stabilitas fackor daya 4 Menjaga kesetabilan sudut rotor 5 Membatasi generator sedemikian hingga tetap beroperasi pada daerah aman. Cara Kerja Sistem Eksitasi PLTMH Curug PLTMH Curug memiliki sistem eksitasi tanpa sikat brashless sehingga dalam menginjeksikan arus DC menuju main exciter dihasilkan dari generaror AC utama yang telah disearahkan oleh rotating dioda sehingga dapat menginjeksikan arus DC menuju main exciter. Besarnya arus DC yang di injeksikan menuju main exciter dapat diatur dengan mengatur gate thyristor baik diatur secara manual melalui potensio ataupun secara kontrol dengan ABB UNITROL 1020. Untuk mengatur besarnya arus eksitasi yang di injeksikan ke main exciter diatur oleh ABB UNITROL 1020. ABB UNITROL 1020 akan mengontrol jalannya proses eksitasi ketika menginjeksikan arus DC dari order pertama yaitu field flashing dengan sumber utama battery 125 VDC ketika generator belum mampu menghasilkan tegangan. Dengan adanya arus ini, maka generator akan menghasilkan tegangan keluaran. Proses ini akan di kntrol oleh ABB UNITROL 1020 dengan menutup kontaktor dan merubah sumber tegangan dan arus eksitasi ke generator utama ketika pada saat tegangan keluaran generator telah mencapai 20% dari tegangan nominalnya sebesar 6,6 kV dan pada saat bersamaan thyristor mulai beroperasi dan menaikan tegangan hingga nilai nominalnya. Keluaran tegangan AC tiga fasa generator yang sebesar 6,6 kV diturunkan terlebih dahulu oleh trafo eksitasi menjadi 400 V yang kemudian disearahkan oleh thyristor rectifier menjadi tegangan DC. Untuk mengontrol besarnya arus eksitasi yang di injeksikan pada rotor generator dilakukan oleh Automatic Voltage Regulator AVR ABB UNITROL 1020 dengan cara mengatur besarnya tegangan atau arus yang di injeksikan pada terminal gate thyristor rectifier. Ketika kaki gate diberi tegangan positif, maka thyrstor akan menghantar-kan arus listrik dari anoda ke katoda dari thyristor tersebut, sehingga arus eksitasi akan di teruskan menuju main exciter yang selanjutnya arus yang keluar dari generator main exciter akan diteruskan dan disearahkan oleh rotation diode menuju ke rotor generator utama. AVR bekerja bergantung kepada pembebanan terhadap generator itu senndiri. Keluaran dari AVR atau ABB UNITROL ini berupa tegangan analog sehingga harus dikonversikan terlebih dahulu menjadi tegangan PWM pulse width modulation oleh pulse generator lalu dikuatkan oleh PAM Pulse Amplifier Module sehingga dapat mengatur switching thyristor. ABB UNITROL ini diatur dalam mode VAR karena kapasitas generator yang kecil dan terhubung dengan sistem/grid yang jauh dan akan selalu mengikuti teganangan jaringan karena patokannya ialah VAR. Pengaturan Sistem Eksitasi Dalam Kondisi Berbeban Saat generator sinkron bekerja pada beban nol tidak ada arus yang mengalir melalui kumparan jangkar stator, sehingga yang ada pada celah udara hanya fluksi arus medan ro-tor. Namun jika generator sinkron diberi beban, arus jangkar Ia akan mengalir dan memben-tuk fluksi jangkar. Fluksi jangkar ini kemudian mempengaruhi fluksi arus medan dan akhirnya menyebabkan berubahnya harga tegangan terminal generator sinkron. Reaksi ini kemudian dikenal sebagai reaksi jangkar. Pengaruh yang ditimbulkan oleh fluksi jangkar dapat berupa distorsi, penguatan magnetising, maupun pelemahan demagnetising fluksi arus medan pada celah udara. Perbedaan pengaruh yang ditimbulkan fluksi jangkar tergantung kepada beban dan faktor daya beban. Analisa Data Operasi Harian PLTMH Curug Unit 2 Sebagaimana yang terdapat pada bab sebelumnya dimana saya memfokuskan pada pengaruh pembebanan tehadap terhadap tegangan output generator PLTMH Curug Unit 2. Dimana untuk melihat hal tersebut dibutuhkan data operasi harian dari PLTMH Curug Unit 2. Berikut data operasi harian PLTMH Curug Unit 2 tanggal 03 Februari 2020. JURNAL SIMETRIK VOL 11, NO. 1, JUNI 2021 p-ISSN 2302-9579/e-ISSN 2581-2866 402 Tabel 1. Data Operasi Harian Sumber Miftah Farhan, 2020 Dari data tabel 1 dapat terlihat bahwa arus eksitasi dan tegangan output generator tidak ter-lihat berubah signifikan ini disebabkan karena beban sendiri sudah ditetapkan tidak menekan atau menyesuaikan kebutuhan beban diliar/ jaringan dan pengaturan bebaban sendiri diatur secara manual. Pengaruh Pembebanan Daya Aktf P tehadap Tegangan Output Generator Dari data tabel 1 dapat diketahui bahwa dengan terjadinya perubahan beban, tegangan output generator juga akan ikut berubah. Ketika beban naik, maka yang terjadi adalah membuat tegangan output generator juga menjadi turun sehingga memaksa generator un-tuk menaikkan tegangan output generator agar tetap dalam kondisi nominalnya. Tegangan output generator ini dapat dijaga pada kondisi nominalnya dengan cara menambah besarnya arus eksitasi yang diinjeksikan ke rotor pada saat terjadi penurunan beban tegangan output generator juga akan naik melebihi tegangan nominalnya. Sumber Miftah Farhan, 2020 Gambar 2. Grafik Pembebanan Terhadap Teganan Output Generator Untuk menjaga agar tegangan output tetap pada kondisi nominalnya maka besarnya arus eksitasi yang diinjeksikan pada rotor generator harus diku-rangi. Hal ini dibuktikan pada grafik tegangan keluar generator terhadap arus eksitasi dan pengaruh pembebanan terhadap tegangan keluar. Grafik dapat dilihat pada gambar 2. Pengaruh Pembebanan Daya Aktif P Terhadap Arus Eksitasi Pada dasarnya tegangan output dan arus eksitasi memiliki hubungan yang saling berkaitan terhadap pembebanan. Seperti yang telah dijelaskan sebelumnya, ketika pem-bebanan naik, maka tegangan jaringan dan tegangan output generator akan turun. Sumber Miftah Farhan, 2020 Gambar 3. Pengaruh Pembebanan Daya Aktif P Terhadap Arus Eksitasi Oleh karenanya dibutuhkan penambahan arus eksitasi untuk menjaga tegangan output gen-erator tetap pada kondisi nominalnya. Berikut ini grafik pengaruh pembebanan terhadap arus eksitasi. Grafik dilihat pada gambar 3. Pengaruh Pembebanan Daya Reaktif Q Terhadap Arus Eksitasi Seperti telah di bahas sebelumnya Pembebanan daya reaktif mampu menyebabkan reaksi jangkar yang dapat mempengaruhi arus medan. Dimana di dalam dapat terlihat bahwa arus eksitasi yang di injeksikan pada rotor generator di gunakan untuk mengatur besar daya reaktif Q. daya reaktif tersebut di atur untuk menjaga tegangan generator agar tetap pada tegangan nominalnya, ini membuktikan bahwa arus eksitasi berguna untuk mengatur daya reaktif yang diinginkan dan menjaga tegangan generator agar da-lam batas nominalnya. Grafik dapat dilihat pada gambar 4. Sumber Miftah Farhan, 2020 Gambar Pembebanan Daya Reaktif Q Terhadap Arus Eksitasi 5. PENUTUP Kesimpulan Dari pembahasan yang telah dilakukan, dapat disimpulkan beberapa hal, yaitu 1 Jenis sistem eksitasi pada generator PLTMH Curug adalah sistem eksitasi tanpa menggunakan sikat brashless. JURNAL SIMETRIK VOL 11, NO. 1, JUNI 2021 p-ISSN 2302-9579/e-ISSN 2581-2866 403 2 Pembebanan pada generator PLTMH Curug diatur secara manual menggunakan po-tensiometer dan diatur mengikuti kebutuhan beban di jaringan sehingga perubahan beban pada generator PLTMH Curug tidak terlalu signifikan dan tidak terpengaruh beban di jaringan/grid. 3 Ketika beban naik maka tegangan output generator akan turun maka dibutuhkan in-jeksi penambahan arus eksitasi 4 semakin besar pembebana maka, maka arus eksitasi yang diinjeksikan akan semakin besar. Saran Pada saat penelitian sebaiknya lebih banyak bertanya ketika ada data yang keliru dan kurang jelas, dikarnakan data masih ditulis tangan atau manual kadang tidak terbaca. DAFTAR PUSTAKA Sebayang, F. R., & Hasibuan, A. R., 2013. Analisis Perbaikan Faktor Daya Beban Resistif, Induktif, Kapasitif Generator Sinkron 3 Fasa Menggunakan Metode Pottier. vol, 3, 6. Hardiansyah, R., 2016. Sistem Pengendalian Eksitasi Dengan Abb Unitrol 1020 Pada Generator Di Plta Ir. H. Djuanda Jatiluhur. Bandung Politeknik Negeri Bandung Ilham., 2017. Karakteristik Perubahan Pembebanan Puncak Grid System 500 Kv Terhadap Arus Eksitasi Generator Unit 3 Plta Cirata. Purwakarta Politeknik Enjnering Indorama Rompas, P. T., 2011. Analisis pembangkit listrik tenaga mikrohidro pltmh pada daerah aliran sungai ongkak mongondow di desa muntoi kabupaten bolaang mongondow. Jurnal Penelitian Saintek, 162, 160-171. Ridzki, I., 2017. Analisis Pengaruh Perubahan Eksitasi Terhadap Daya Reaktif Generator. JURNAL ELTEK, 112, 31-41. Azis, H., Pawenary, P., & Sitorus, M. T. B., 2019. Simulasi Pemodelan Sistem Eksitasi Statis pada Generator Sinkron terhadap Perubahan Beban. Energi & Kelistrikan, 112, 46-54. ... Dikatakan generator sinkron karena kecepatan putaran rotornya sama dengan kecepatan putaran medan magnet pada stator. Kumparan medan generator sinkron terletak di bagian rotor, sedangkan kumparan jangkar berada di stator [7]. Induksi elektromagnetik yang terjadi adalah aplikasi dari Hukum Faraday yang menyatakan "Jika sebuah penghantar memotong garis-garis gaya dari sebuah medan magnetik flux yang konstan, maka pada penghantar tersebut akan timbul GGL" [7], [8]. ...... Kumparan medan generator sinkron terletak di bagian rotor, sedangkan kumparan jangkar berada di stator [7]. Induksi elektromagnetik yang terjadi adalah aplikasi dari Hukum Faraday yang menyatakan "Jika sebuah penghantar memotong garis-garis gaya dari sebuah medan magnetik flux yang konstan, maka pada penghantar tersebut akan timbul GGL" [7], [8]. Generator yang merupakan mesin listrik berputar juga perlu dilakukan pemeliharaan. ...Luki Septya MahendraAfnan Arif SuryantoBagiyo HerwonoJauharotul MaknunahPembangkit Listrik Tenaga Uap PLTU Suge Unit 2 Kabupaten Belitung pada tanggal 21 Juli 2020 mengalami gangguan pada generator yang berakibat tidak dapat beroperasi. Akibatnya berdampak pada defisit pasokan listrik pada daerah Kepulauan Bangka Belitung. Sehingga pada penelitian ini dilakukan inspeksi ke lapangan dan pengukuran tahanan isolasi rotor dan tahanan belitan rotor untuk analisa gangguan. Dari hasil inspeksi terdapat pengaman ground fault yang trip dan dari hasil pengukuran nilai isolasi dan tahanan belitan rotor adalah dibawah standar IEEE sehingga dapat dianalisa terjadi short cicuit ke tanah. Short circuit mengakibatkan kerusakan pada leadbus rotor. Sehingga perlu dilakukan pemulihan gangguan berupa penyambungan dengan menggunakan metode brazing. Metode ini yaitu dengan menyambungkan leadbus dengan cara Torch Heating. Cara ini dipilih karena yang paling umum untuk keperluan penyambungan bahan metal dan sesuai dengan kondisi PLTU. Setelah dilakukan penyambungan diukur kembali tahanan isolasi rotor dan tahanan belitan rotor. Dari hasil pengukuran pasca pemulihan sudah sesuai dengan standar IEEE. Secara garis besar kondisi rotor generator masih bisa dioperasikan namun perlu dilakukan perawatan rotor generator secara menyeluruh dalam waktu dekat.... Generator sinkron merupakan salah satu komponen utama dalam proses pembangkitan tenaga listrik. Untuk membangkitkan daya listrik diperlukan sistem yang digunakan sebagai penguat agar dapat menghasilkan medan magnet atau lebih sering disebut sistem eksitasi [5][6] [7]. Gaya gerak listrik GGL adalah beda potensial yang berada diantara ujung-ujung suatu penghantar dalam sebuah rangkaian terbuka [8]. ...Setya Aria PutraDian Budhi SantosoGenerator sinkron membutuhkan suatu medan magnet sebagai penguat agar dapat menghasilkan tegangan listrik. Medan magnet tersebut dapat diperoleh dari arus eksitasi yang dibangkitkan oleh exciter. Arus eksitasi tersebut mengalir pada kumparan medan yang terdapat pada rotor, sehingga rotor itu dapat menghasilkan medan magnet. Kemudian, konduktor akan memotong garis-garis gaya magnet dan menghasilkan Gaya Gerak Listrik GGL sehingga menghasilkan tegangan [1]. Saat arus eksitasi diatur di bawah nilai nominal, maka fluks magnet yang terdapat pada stator akan menurun, sehingga tegangan yang dihasilkan oleh generator juga ikut turun. Perubahan pada eksitasi menjadi penyabab tegangan dan daya reaktif yang dihasilkan generator mempunyai nilai batas tertinggi dan batas terendah. Perubahan besarnya arus eksitasi juga mempengaruhi variasi nilai beban pada besarnya daya reaktif. Pengaturan input pada generator sinkron adalah pengaturan yang dilakukan input arus medan dan frekuensi, input arus medan digunakan untuk mengatur besarnya nilai keluaran daya reaktif dan tegangan yang dihasilkan oleh generator. Berdasarkan data akhir dari hasil perhitungan daya reaktif dapat dilihat bahwa nilai faktor daya yang diperoleh minimum sebesar 0,94 dengan arus eksitasi pada rotor sebesar 314 A dan daya reaktif sebesar 3,1 MVAR, sehingga dapat simpulkan bahwa besar nilai daya reaktif yang dihasilkan oleh generator berbanding lurus dengan arus eksitasi yang Rizal MaulanaAgus SuandiHelmizarThe generator in the hydropower system is used to convert mechanical energy originating from the turbine rotation into electrical energy by producing an electromotive force. Excitation is one of the most crucial parts of the Generator system, where excitation plays a role in forming/producing electromagnetic flux, resulting in an induced emf. The amplifying current is used to adjust the magnitude of the output voltage according to the applied load. The tool used to regulate the excitation current is the Automatic Voltage Regulator AVR. The differential loading on the generator changes every time. Therefore a power plant must be able to generate electricity in accordance with the magnitude of the changing load. In power generation, these loading fluctuations can be overcome by adjusting the water valve opening and the excitation current flowing to the electromagnet coil on the generator rotor with constant rotor rotation by the AVR so that electric power is generated according to the applied load. The purpose of this study is to analyze the effect of the load on the excitation current. The results obtained are the load has an effect on the excitation AzisPawenary PawenaryMeyhart Torsna Bangkit SitorusExcitation system is one of the most important parts of synchronous generators, where the system functions to provide dc power to the field generator coil. Iin this study, a static excitation system consisting of transformers and connected thyristors in bridge configuration has been implemented in synchronous machines that operate as 206,1 mva capacity generators, 16,5 kv using the help of matlab simulink r2017b software. By adjusting the load given to the generator, variations in excitation currents can affect the amount of output voltage generated by the generator so that it can increase and decrease the induced voltage. In full load conditions, namely p = 175 mw, q = 100 mvar, the results of the study show that when the simulation is run at alpha 0 °, it is known that the average value of dc voltage is 496,4 v, excitation current is 1057 a and voltage generator output has increased beyond its nominal voltage of 16,72 kv. in this case, to maintain the terminal voltage, the excitation current must be reduced by increasing the angle of shooting of the thyristor to an alpha angle of 45 °, so that the average dc voltage can be reduced to 479,3 v, as well as the excitation current to 985,9 a. the generator output voltage at the alpha 45 ° angle is obtained according to its nominal value of 1,.5 Perbaikan Faktor Daya Beban Resistif, Induktif, Kapasitif Generator Sinkron 3F R SebayangA R HasibuanSebayang, F. R., & Hasibuan, A. R., 2013. Analisis Perbaikan Faktor Daya Beban Resistif, Induktif, Kapasitif Generator Sinkron 3 Fasa Menggunakan Metode Pottier. vol, 3, Perubahan Pembebanan Puncak Grid System 500 Kv Terhadap Arus Eksitasi Generator Unit 3 Plta Cirata. Purwakarta Politeknik Enjnering Indorama RompasR HardiansyahHardiansyah, R., 2016. Sistem Pengendalian Eksitasi Dengan Abb Unitrol 1020 Pada Generator Di Plta Ir. H. Djuanda Jatiluhur. Bandung Politeknik Negeri Bandung Ilham., 2017. Karakteristik Perubahan Pembebanan Puncak Grid System 500 Kv Terhadap Arus Eksitasi Generator Unit 3 Plta Cirata. Purwakarta Politeknik Enjnering Indorama Rompas, P. T., 2011. Analisis pembangkit listrik tenaga mikrohidro pltmh pada daerah aliran sungai ongkak mongondow di desa muntoi kabupaten bolaang mongondow. Jurnal Penelitian Saintek, 162, Pengaruh Perubahan Eksitasi Terhadap Daya Reaktif GeneratorI RidzkiRidzki, I., 2017. Analisis Pengaruh Perubahan Eksitasi Terhadap Daya Reaktif Generator. JURNAL ELTEK, 112, 31-41. ronym Senior Member Posts 393 Post by ronym on Dec 18, 2013 65819 GMT 7 "pekerjaan" discharging / mengosongkan setrum di dalam baterai jika dilakukan secara sengaja... misal untuk percobaan memang sedikit rumitapalagi jika kita memiliki target... discharging sampai 11,00 volt .sebagai contohbaterai 12 v yang berkapasitas 4 Ampere Houritu artinya baterai bisa menyalakan beban 400 mA selama 10 lampu 5 watt hidup selama 10 jam ?tentu pekerjaan yang membosankan apalagi jika ukuran battery bank 100-400 AH ... tentunya lebih merepotkan .agar pekerjaan ini menjadi singkat... kita melebihkan beban misal dengan lampu 21 watt yang memakan arus 1,75 problem muncul...saat baterai diberi beban diluar "rating" nya... tegangan akan cepat dropdalam hal ini baterai 12v 4AH jika diberi beban 21 watthanya dalam waktu 10-15 menit ... tegangan drop menjadi 9-10 volt terutama untuk batere / aki yang sudah mulai soak .mungkin kita berfikir... wah kelewatan nih apabila baterai ini hentikan proses dschargingdan kita istirahatkan minimal 5 menit normalnya antara 10-30 menit tegangan aki akan kembali ke titik 12,00-12,40 kok tegangan aki bisa pulih sendiripadahal nggak di apa apain ?.mungkin inilah karakteristik batere pada umumnyapada rangkaian yang menyedot arus 1/20 ataupun kurang dari kapasitas baterebatere mampu mempertahankan kinerjanya selama 10 - 20 jam non stop tegangan batere turun berangsur-angsur / bertahap sampai baterai "kosong".namun pada alat yang mengkonsumsi arus besar misal UPS, inverter hanya mampu bekerja nonstop antara 15 sampai 30 menit sajakarena UPS berkapasitas 600 VA "biasanya" menggunakan aki kering dengan kapasitas 4,5 AH atau 7 AHpenurunan tegangan terjadi secara eksponensial tegangan batere turun dengan sangat cepat Last Edit Dec 18, 2013 81051 GMT 7 by ronym Post by Sucahyo on Dec 18, 2013 83718 GMT 7 Iya, tegangan baterai akan naik lagi setelah dipakai. sepertinya ini karena efek sifat kimianya. Butuh waktu untuk menghasilkan tegangan setelah baterai penuh, penurunan tegangan sedikit, makin kosong, penurunan tegangan makin yang boleh ditarik dari baterai tergantung tipe baterainya. Untuk baterai tipe engine starter, memang dirancang untuk bisa narik amper yang besar. Kalau untuk UPS, dirancang untuk tidak gampang habis saat tidak dipakai. ronym Senior Member Posts 393 Post by ronym on Dec 18, 2013 90111 GMT 7 namun anehnya...pada UPS, batere yang digunakan malahan yang bertipe mendekati deep cyclealias ratingnya dirancang untuk 20 karena pada UPS, batere ditarik arus yang sangat besar melebihi ratingnya lebih cocok dipakai batere starterkarena toh hanya dipakai untuk 15-30 menit saja batere starter didesain untuk 10 hour pemakaian .baterai dengan rating 20 hour / dee cycle mungkin lebih cocok untuk mendrive Lampu LED, alarm, dan sebagainya yang hanya membutuhkan arus kurang dari 1 amperenamun mampu dipanjer seharian termasuk untuk WIFI station / repeater di daerah terpencil juga cocokkebetulan baru tahu ada wifi outdoor yang bisa nyampe 15 kilo... dengan harga cuma Rp 400 ribuan bahkan bisa 50 km jika pake antena dengan gain tinggi yang ane lihat speknya cuma butuh arus 1 Ampere 12 volt . Last Edit Dec 18, 2013 90359 GMT 7 by ronym Post by Sucahyo on Dec 18, 2013 114218 GMT 7 Saya rasa pelabelan baterai sekarang ini tidak jelas. Katanya deep cycle tapi cuma kasih garansi 1 tahun. Kalau setahun atau dua tahun mati katanya memang normalnya begitu. Seharusnya yang namanya deep cycle itu bisa tahan dipakai lebih dari jenis pemakaian, memang UPS lebih butuh yang narik arus besar di waktu jarak wifi sepertinya lebih tergantung antenna, bukan dari unitnya. Post by Sucahyo on Dec 8, 2016 155554 GMT 7 di butuhkan berapa baterai agar tidak drop ketika di pasang watt yang terlalu tinggiBatas maksimum dari batre biasanya setara kapasitas. Batre 7Ah maksimalnya 7A., jadi misal 12V maka maksimal 84 watt.

tegangan turun saat diberi beban